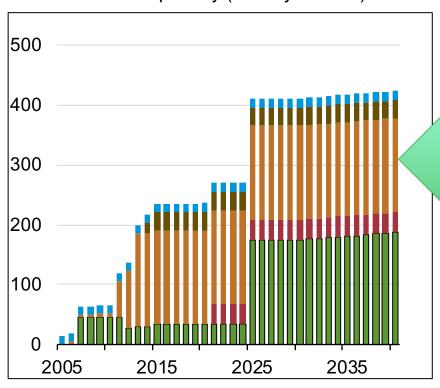


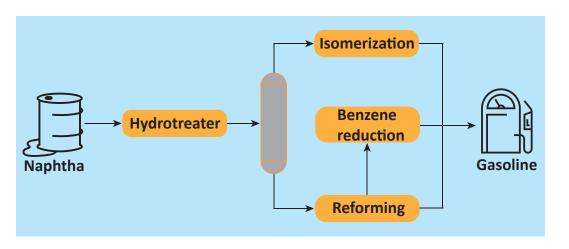
Methaforming: Production of gasoline from naphtha and ethanol at 1/3 the cost


Trend 1:

Refiners do and will need more capacity to process lighter fractions of oil

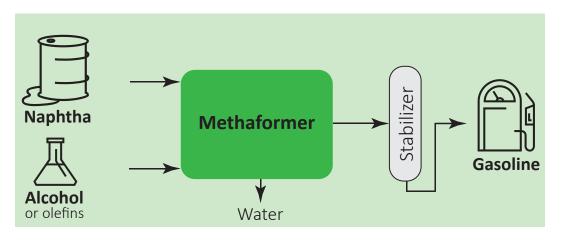
Global gas-to-liquids (GTL) plant output

Thousand barrels per day (data by US EIA)


Trend 2:

GTL plant operators will need to process ~200 k bpd of new GTL naphtha

- Carbon tax, cap-and-trade;
 e.g. California LCFS with
 \$180-200/ton of CO₂, ~\$200m
 daily trading volume.
- Making 1 gal of gasoline produces 2.5 lb of CO₂.
- At ~1 billion tons of CO₂ per year, the oil refining industry is the world's 3rd largest polluter.


Trend 3:

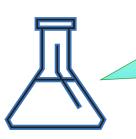
Reducing CO₂ emissions has become an economic matter

Incumbent technology:

- 5 processing steps
- Multiple reheats → fuel burn
- Needs scale to turn a profit (>> 5k bpd, ~200k tpa*)

Methaforming:

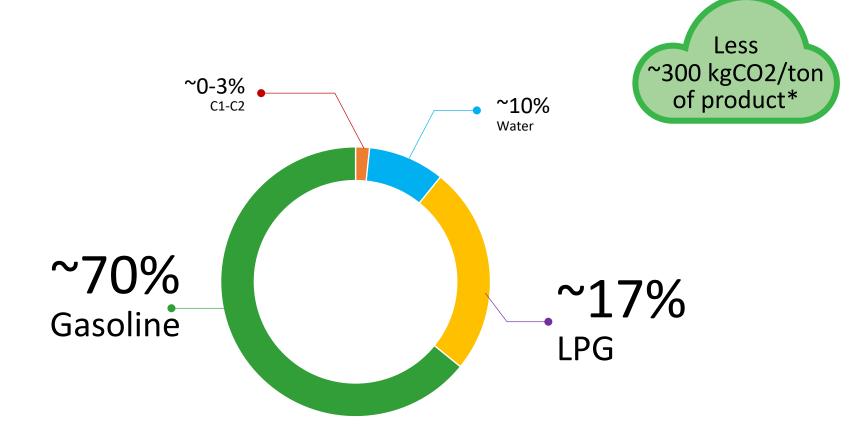
- Single step, less fuel burn
- Efficient → ¹/₅ CO₂ emissions
- Can use <u>renewable</u> and low value feeds
- Profitable from 50 bpd, 2k tpa



Feeds (lists are incomplete)

2/3 to 4/5
naphtha

- Light virgin naphtha
- Full range naphtha
- Condensate
- Diluent
- Natural gasoline
- Raffinate


1/5 to 1/3 alcohol, ether or olefins

- (Bio) ethanol
- Methanol
- FCC dry gas

Products



Value uplift can exceed \$20 per barrel

^{*} Compared to traditional processing pathway. Can be worth an additional ~\$50-60 per ton of product.

- First commercial plant (2017)
- 150 bpd
- Value uplift up to \$45/bbl

First large scale commercial plant announced in May 2019

Methaformer vs Traditional Reforming Suite (HDS+semi-regen)

New 215 K tpa unit (5 K BPD)	Methaforming	Alternative	Δ Methaforming - Alternative
Yields*, \$ million/yr	29	24	+ 5
OpEx, \$ million/yr	8	12	- 4
CapEx, \$ million	25	55	- 30
Total NPV, \$ million	120	20	+ 100

Net present value @12% is \$100 million higher

Convert Semi-regen Reformer

Existing 860 K tpa unit (20 K BPD)	Methaforming	Alternative	Δ Methaforming - Alternative
Yields, \$million/yr	126	95	+ 31
OpEx, \$million/yr	13	23	- 10
CapEx, \$million	20	-	+ 20
Total NPV, \$million	750	490	+ 260

Net present value of conversion @12% is \$260 million

Grassroots Unit to Process Raffinate and FCC dry gas

New 88 K tpa unit (2 K BPD)	Our Unit	Alternative (direct blending)	Δ Our Unit - Alternative
Yields, \$million/yr	62	41	+21
OpEx, \$million/yr	4	0	+4
CapEx, \$million	14	0	+14
Total NPV, \$million	+100	n/a	+100

Net present value @12% is \$100 million

Summary

Upgrade low octane naphtha by \$130-330/ton

Produce gasoline from naphtha and alcohol at 1/3 the cost with comparable yields

